Sonochemical synthesis of nanomaterials.
نویسندگان
چکیده
High intensity ultrasound can be used for the production of novel materials and provides an unusual route to known materials without bulk high temperatures, high pressures, or long reaction times. Several phenomena are responsible for sonochemistry and specifically the production or modification of nanomaterials during ultrasonic irradiation. The most notable effects are consequences of acoustic cavitation (the formation, growth, and implosive collapse of bubbles), and can be categorized as primary sonochemistry (gas-phase chemistry occurring inside collapsing bubbles), secondary sonochemistry (solution-phase chemistry occurring outside the bubbles), and physical modifications (caused by high-speed jets or shock waves derived from bubble collapse). This tutorial review provides examples of how the chemical and physical effects of high intensity ultrasound can be exploited for the preparation or modification of a wide range of nanostructured materials.
منابع مشابه
Degradation and removal of organic pollutants by BaFe2O4 nanostructures, synthesis and characterization
BaFe2O4 nanostructures have been synthesized through a simple sonochemical reduction approach. X-ray diffraction characterization suggested that the product consists of cubic phase pure BaFe2O4. The as-prepared products were also characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An X-ray energy dispersive spectroscopy (EDX) study further confirmed t...
متن کاملDegradation and removal of organic pollutants by BaFe2O4 nanostructures, synthesis and characterization
BaFe2O4 nanostructures have been synthesized through a simple sonochemical reduction approach. X-ray diffraction characterization suggested that the product consists of cubic phase pure BaFe2O4. The as-prepared products were also characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An X-ray energy dispersive spectroscopy (EDX) study further confirmed t...
متن کاملSonochemical preparation of polymer nanocomposites.
This review covers sonochemical fabrication of polymer nanocomposites. In addition to its application to the synthesis of various polymeric systems, due to its powerful efficiency, sonochemistry has been widely used not only as the assistant of dispersion for nanomaterials such as carbon nanotubes (CNT) and organophillic clay, but also as a special initiator to enhance polymerization for fabric...
متن کاملNon-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation
The aim of this study was to obtain nanocrystalline mixed metal-oxide-ZrO₂ catalysts via a sonochemically-induced preparation method. The effect of a stabiliser's addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispers...
متن کاملThe synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor.
A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-...
متن کاملEffect of Morphology on the Photocatalytic Behavior of ZnO Nanostructures: Low Temperature Sonochemical Synthesis of Ni Doped ZnO Nanoparticles
In the present study, ZnO nanostructure has been synthesized by different methods, namely coprecipitation, hydrothermal and sonochemical methods. After comparison of the morphology and photocatalytic activity of ZnO samples prepared via different methods, the best method (sonochemical method) was used for synthesis of Ni-ZnO nanoparticles with different concentrations of nickel. Furthermore, st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical Society reviews
دوره 42 7 شماره
صفحات -
تاریخ انتشار 2013